1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
| using System.Collections; using System.Collections.Generic; using System.Threading.Tasks; using UnityEngine; using System; using System.IO;
public class FVM : MonoBehaviour { public bool LaplacianSmoothing = false; public enum PartType{BasePart, Bonus} public PartType partType = PartType.BasePart;
float dt = 0.0015f; float mass = 1; float stiffness_0 = 20000.0f; float stiffness_1 = 5000.0f; float damp = 0.999f;
float restitution = 0.4f;
Vector3 gravity = new Vector3(0, -9.8f, 0);
int[] Tet; int tet_number;
Vector3[] Force; Vector3[] V; Vector3[] SmoothV; bool[] isSmooth; Vector3[] X; int number;
Matrix4x4[] inv_Dm; float[] V_ref; int[][] neighbour;
Vector3[] V_sum; int[] V_num;
SVD svd = new SVD();
void Start() { { string fileContent = File.ReadAllText("Assets/Lab/lab3/house2.ele"); string[] Strings = fileContent.Split(new char[] { ' ', '\t', '\r', '\n' }, StringSplitOptions.RemoveEmptyEntries);
tet_number = int.Parse(Strings[0]); Tet = new int[tet_number * 4];
for (int tet = 0; tet < tet_number; tet++) { Tet[tet * 4 + 0] = int.Parse(Strings[tet * 5 + 4]) - 1; Tet[tet * 4 + 1] = int.Parse(Strings[tet * 5 + 5]) - 1; Tet[tet * 4 + 2] = int.Parse(Strings[tet * 5 + 6]) - 1; Tet[tet * 4 + 3] = int.Parse(Strings[tet * 5 + 7]) - 1; } } { string fileContent = File.ReadAllText("Assets/Lab/lab3/house2.node"); string[] Strings = fileContent.Split(new char[] { ' ', '\t', '\r', '\n' }, StringSplitOptions.RemoveEmptyEntries); number = int.Parse(Strings[0]); X = new Vector3[number]; for (int i = 0; i < number; i++) { X[i].x = float.Parse(Strings[i * 5 + 5]) * 0.4f; X[i].y = float.Parse(Strings[i * 5 + 6]) * 0.4f; X[i].z = float.Parse(Strings[i * 5 + 7]) * 0.4f; } Vector3 center = Vector3.zero; for (int i = 0; i < number; i++) center += X[i]; center = center / number; for (int i = 0; i < number; i++) { X[i] -= center; float temp = X[i].y; X[i].y = X[i].z; X[i].z = temp; } }
Vector3[] vertices = new Vector3[tet_number * 12]; int vertex_number = 0; for (int tet = 0; tet < tet_number; tet++) { vertices[vertex_number++] = X[Tet[tet * 4 + 0]]; vertices[vertex_number++] = X[Tet[tet * 4 + 2]]; vertices[vertex_number++] = X[Tet[tet * 4 + 1]];
vertices[vertex_number++] = X[Tet[tet * 4 + 0]]; vertices[vertex_number++] = X[Tet[tet * 4 + 3]]; vertices[vertex_number++] = X[Tet[tet * 4 + 2]];
vertices[vertex_number++] = X[Tet[tet * 4 + 0]]; vertices[vertex_number++] = X[Tet[tet * 4 + 1]]; vertices[vertex_number++] = X[Tet[tet * 4 + 3]];
vertices[vertex_number++] = X[Tet[tet * 4 + 1]]; vertices[vertex_number++] = X[Tet[tet * 4 + 2]]; vertices[vertex_number++] = X[Tet[tet * 4 + 3]]; }
int[] triangles = new int[tet_number * 12]; for (int t = 0; t < tet_number * 4; t++) { triangles[t * 3 + 0] = t * 3 + 0; triangles[t * 3 + 1] = t * 3 + 1; triangles[t * 3 + 2] = t * 3 + 2; } Mesh mesh = GetComponent<MeshFilter>().mesh; mesh.vertices = vertices; mesh.triangles = triangles; mesh.RecalculateNormals();
V = new Vector3[number]; SmoothV = new Vector3[number]; isSmooth = new bool[number]; Force = new Vector3[number]; V_sum = new Vector3[number]; V_num = new int[number];
inv_Dm = new Matrix4x4[tet_number]; V_ref = new float[tet_number]; for (int tet = 0; tet < tet_number; tet++) { inv_Dm[tet] = Build_Edge_Matrix(tet); inv_Dm[tet] = inv_Dm[tet].inverse; V_ref[tet] = 1 / (6 * inv_Dm[tet].determinant); } neighbour = new int[number][]; }
Matrix4x4 Build_Edge_Matrix(int tet) { Matrix4x4 ret = Matrix4x4.zero;
int index_0 = Tet[tet * 4 + 0]; int index_1 = Tet[tet * 4 + 1]; int index_2 = Tet[tet * 4 + 2]; int index_3 = Tet[tet * 4 + 3];
Vector3 X10 = X[index_1] - X[index_0]; Vector3 X20 = X[index_2] - X[index_0]; Vector3 X30 = X[index_3] - X[index_0];
ret[0] = X10[0]; ret[1] = X10[1]; ret[2] = X10[2];
ret[0, 1] = X20[0]; ret[1, 1] = X20[1]; ret[2, 1] = X20[2];
ret[0, 2] = X30[0]; ret[1, 2] = X30[1]; ret[2, 2] = X30[2];
ret[3, 3] = 1; return ret; }
void _Update() { if (Input.GetKeyDown(KeyCode.Space)) { for (int i = 0; i < number; i++) V[i].y += 0.2f; }
Parallel.For(0, number, (i) => { Force[i] = new Vector3(0, -9.8f, 0); }); Parallel.For(0, tet_number, (tet) => { Matrix4x4 F = Matrix4x4.zero; F = Build_Edge_Matrix(tet) * inv_Dm[tet];
Matrix4x4 P; if (partType == PartType.BasePart) { Matrix4x4 FtF = F.transpose * F;
Matrix4x4 G = MatrixMultiple(MatrixSubtraction(FtF, Matrix4x4.identity), 0.5f); float trace; trace = G[0, 0] + G[1, 1] + G[2, 2]; Matrix4x4 dWdG = MatrixAddition(MatrixMultiple(G, 2 * stiffness_1), MatrixMultiple(Matrix4x4.identity, stiffness_0 * trace));
P = F * dWdG; } else { Matrix4x4 Lambda = Matrix4x4.identity; Matrix4x4 U = Matrix4x4.identity; Matrix4x4 V = Matrix4x4.identity; svd.svd(F,ref U,ref Lambda,ref V); U[3, 3] = 1; Lambda[3, 3] = 1; V[3, 3] = 1; Matrix4x4 diag = Matrix4x4.identity; float Lambda0 = Lambda[0, 0]; float Lambda0_2 = Lambda0 * Lambda0; float Lambda1 = Lambda[1, 1]; float Lambda1_2 = Lambda1 * Lambda1; float Lambda2 = Lambda[2, 2]; float Lambda2_2 = Lambda2 * Lambda2;
diag[0, 0] = 2 * stiffness_0 * (Lambda0_2 + Lambda1_2 + Lambda2_2 - 3) * Lambda0 + stiffness_1 * (Lambda0-1) * Lambda0; diag[1, 1] = 2 * stiffness_0 * (Lambda0_2 + Lambda1_2 + Lambda2_2 - 3) * Lambda1 + stiffness_1 * (Lambda1-1) * Lambda1; diag[2, 2] = 2 * stiffness_0 * (Lambda0_2 + Lambda1_2 + Lambda2_2 - 3) * Lambda2 + stiffness_1 * (Lambda2-1) * Lambda2;
P = U * diag * V.transpose; }
Matrix4x4 F123 = MatrixMultiple(P, -V_ref[tet]) * inv_Dm[tet].transpose;
Vector3 f1 = (Vector3)F123.GetColumn(0); Vector3 f2 = (Vector3)F123.GetColumn(1); Vector3 f3 = (Vector3)F123.GetColumn(2);
Vector3 f0 = -f1 - f2 - f3;
Force[Tet[tet * 4 + 0]] += f0; Force[Tet[tet * 4 + 1]] += f1; Force[Tet[tet * 4 + 2]] += f2; Force[Tet[tet * 4 + 3]] += f3;
if(LaplacianSmoothing) { int index_0 = Tet[tet * 4 + 0]; int index_1 = Tet[tet * 4 + 1]; int index_2 = Tet[tet * 4 + 2]; int index_3 = Tet[tet * 4 + 3]; Vector3 v = (V[index_0] + V[index_1] + V[index_2] + V[index_3]) / 4; SmoothV[index_0] = v; SmoothV[index_1] = v; SmoothV[index_2] = v; SmoothV[index_3] = v; } }); Parallel.For(0, number, (i) => { if(LaplacianSmoothing) V[i] = SmoothV[i]; V[i] += Force[i] * dt; isSmooth[i] = false; SmoothV[i] = Vector3.zero; X[i] += V[i] * dt; V[i] *= damp; }); Collision_Impulse(new Vector3(0, -3, 0), new Vector3(0, 1, 0)); }
void Collision_Impulse(Vector3 P, Vector3 N) { for (int i = 0; i < V.Length; i++) { float sdf = PlaneSignedDistanceFunction(X[i], P, N); if (sdf < 0) { if (Vector3.Dot(V[i], N) < 0) { Vector3 v_Ni = Vector3.Dot(V[i], N) * N; Vector3 v_Ti = V[i] - v_Ni; float mu_N = restitution; float mu_T = 0.1f; float a = Mathf.Max(1 - (mu_T * (1 + mu_N) * v_Ni.magnitude / v_Ti.magnitude), 0); v_Ni = -mu_N * v_Ni; v_Ti = a * v_Ti; Vector3 v_new_i = v_Ni + v_Ti;
V[i] = v_new_i;
X[i] = X[i] - sdf * N; } } } }
float PlaneSignedDistanceFunction(Vector3 x, Vector3 P, Vector3 N) { return Vector3.Dot((x - P), N); }
void Update() { for (int l = 0; l < 10; l++) _Update();
Vector3[] vertices = new Vector3[tet_number * 12]; int vertex_number = 0; for (int tet = 0; tet < tet_number; tet++) { vertices[vertex_number++] = X[Tet[tet * 4 + 0]]; vertices[vertex_number++] = X[Tet[tet * 4 + 2]]; vertices[vertex_number++] = X[Tet[tet * 4 + 1]]; vertices[vertex_number++] = X[Tet[tet * 4 + 0]]; vertices[vertex_number++] = X[Tet[tet * 4 + 3]]; vertices[vertex_number++] = X[Tet[tet * 4 + 2]]; vertices[vertex_number++] = X[Tet[tet * 4 + 0]]; vertices[vertex_number++] = X[Tet[tet * 4 + 1]]; vertices[vertex_number++] = X[Tet[tet * 4 + 3]]; vertices[vertex_number++] = X[Tet[tet * 4 + 1]]; vertices[vertex_number++] = X[Tet[tet * 4 + 2]]; vertices[vertex_number++] = X[Tet[tet * 4 + 3]]; } Mesh mesh = GetComponent<MeshFilter>().mesh; mesh.vertices = vertices; mesh.RecalculateNormals(); }
Matrix4x4 MatrixSubtraction(Matrix4x4 m1, Matrix4x4 m2) { m1[0, 0] -= m2[0, 0]; m1[0, 1] -= m2[0, 1]; m1[0, 2] -= m2[0, 2];
m1[1, 0] -= m2[1, 0]; m1[1, 1] -= m2[1, 1]; m1[1, 2] -= m2[1, 2];
m1[2, 0] -= m2[2, 0]; m1[2, 1] -= m2[2, 1]; m1[2, 2] -= m2[2, 2];
m1[3, 3] = 1; return m1; }
Matrix4x4 MatrixAddition(Matrix4x4 m1, Matrix4x4 m2) { m1[0, 0] += m2[0, 0]; m1[0, 1] += m2[0, 1]; m1[0, 2] += m2[0, 2]; m1[1, 0] += m2[1, 0]; m1[1, 1] += m2[1, 1]; m1[1, 2] += m2[1, 2]; m1[2, 0] += m2[2, 0]; m1[2, 1] += m2[2, 1]; m1[2, 2] += m2[2, 2];
m1[3, 3] = 1; return m1; } Matrix4x4 MatrixMultiple(Matrix4x4 m, float k) { m[0, 0] *= k; m[0, 1] *= k; m[0, 2] *= k; m[1, 0] *= k; m[1, 1] *= k; m[1, 2] *= k; m[2, 0] *= k; m[2, 1] *= k; m[2, 2] *= k;
m[3, 3] = 1; return m; }
}
|